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The measurement of relative plate velocities during the past few years is a signal accomplish-
ment in earth science, leading to refinement of the precepts of steady motion of plate interiors
and cyclic deformation along plate margins. Regrettably, deformation premonitory to an earth-
quake has yet to be detected with confidence. Delineation of the spatial and temporal buildup of
strain between earthquakes, however, has put limits on models of the earthquake cyele. A diverse
set of fault structures and crustal rheologic conditions can explain the pattern of surface strain
accumulation and release along strike-slip faults. In c ontrast, the geometry of thrusts and normal
faults, revealed by earthquake deformation, has been found to differ markedly from expectations.
Geodetic observations have proved vital to monitor the ascent of magma through the Earth’s
crust and to predict voleanic eruptions at the Earth’s surface. Episodic vertical and horizontal

deformation in southern California remains a subject of dispute; if anything,

it once seemed.

PLATE MoTions INFERRED From
TERRESTRIAL AND SPACE GEODESY

Perhaps the most important advance in geodesy dur-
ing the past half century was achieved during the past
4 years: direct measurement of global plate motion.
Ironically, this is not the first time such a claim has
been made. “We begin the demonstration of our theory
with the detection of present-day drift of the continents
by repeated astronomical positioning,” wrote Alfred We-
gener in the 1929 edition of The Origin of Continents and
Oceans (p. 23), “because only recently this method fur-
nished the first real proof of the present-day displace-
ment of Greenland—predicted by drift theory—and be-
cause it also constitutes a good quantitative corrobora-
tion.” From repeated longitude measurements Wegener
found that Greenland had drifted 1,610+£285 m from Eu-
rope between 1823 and 1907, a rate of 19+3 m/yr. This
result agreed with longitude observations performed else-
where on Greenland between 1860 and 1921. Wegener
carefully considered and ultimately dismissed the possi-
bility that gradual improvement in measurement preci-
sion, rather than drift of Greenland, accounted for the
longitude changes: “This accumulation of similar results
which do not stand in opposition to any others makes it
highly improbable that it is all just a matter of unfortu-
nate combination of extreme errors of observation.” To-
day Wegener stands at once vindicated and discredited:
Greenland is drifting away from Europe, but at a veloc-
ity now measured to be 19+10 mm/yr, one-thousandth
Wegener’s proffered rate. We also stand forewarned that
our systematic errors may, too, turn out to be improb-
ably large.

Relative Plate Motion

The relative motions of as many as five plates have
been observed by four independent techniques during
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it is less certain than

the past decade. The methods include terrestrial laser
ranging using the Geodolite, satellite laser ranging (SLR),
satellite radio positioning with the Global Positioning
System (GPS), and Very Long Baseline Interferometry
(VLBI) on extragalactic radio sources. Agreement
among these measurement systems is generally good
and steadily improving [for Geodolite versus GPS,
see Prescott and Svarc, 1986; for GPS versus VLBI,
see Kroger and Davidson, 1986; for VLBI versus SLR,
see Kolenkiewicz et al., 1985, and Lyzenga et al., 1986).
Even more encouraging, however, is that the observed
plate velocities accord well with averaged velocities
over the past 1-2 m.y. inferred from magnetic anomaly
profiles, earthquake slip vectors, and fault azimuths
by Minster and Jordan [1978]. Thus, at a precision of
about 15 mm/yr, plate motion measured sufficiently far
from plate boundaries appears steady over periods of
1-10° yr.

Both the steady velocities of plates measured since
1981 and the agreement between current and geologic
plate rates argue that jerky plate motion is confined
to plate boundaries; no internal deformation of plate
interiors has been reliably measured. Tapley et al. [1985]
found that changes in four intercontinental baselines
measured by SLR from Australia to the North American
and Pacific plates coincided within 3 mm/yr of the
average rates and over the past 2 m.y. Christodoulidis
et al. [1985] reported that the relative motion of six pairs
of plates measured since 1979 by SLR have a correlation
of 0.61 with respect to the velocities predicted by Minster
and Jordan [1978]. Recent SLR results were reviewed
by Cohen and Smith [1985]. Herring et al. [1986] found
that the North American and European plates have been
separating at 19+10 mm/yr as measured by VLBI since
1981, a rate indistinguishable from the 1743 mm/yr
averaged over the past 1 m.y., but also not significantly
different from zero. The more rapid motion of the
Pacific plate relative to North America and Eurasia was
also measured by VLBI; those rates of 50-100 mm/yr
agree with Minster and Jordan’s [1978] values with a mean
discrepancy of 17 mm/yr [Carter and Robertson, 1986].
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Pacific-North American Plate Boundary

The geologic and geodetic displacement along the
San Andreas fault zone has been subjected to closest
scrutiny. During the past 2 m.y., 56&3 mm/yr of
transform motion has been accommodated along the
San Andreas and other right-lateral strike slip and
oblique faults that span California from the coastline to
the Nevada border, although work in progress [Demeta
et al., 1986] suggests that the plate rate may be less
than 50 mm/yr. Sieh and Jahns [1984] found that the
central San Andreas fault has slipped 30-40 mm/yr
during the past 15,000 yr, a finding in accord with
the 33+1 mm/yr rate Thatcher [1979] resolved from the
past century of triangulation. Lyzenga and Golombek
[1986] analyzed VLBI measurements of a 150 x 300-
km triangle spanning the southern San Andreas fault
during the period 1980-84 and found a displacement
rate of 24+4 mm/yr. Thus about half of the plate-
boundary motion is accommodated by the San Andreas
fault. Minster and Jordan [1987] use these data in concert
with other continental VLBI results to explain the
discrepancy in velocity and direction between the plate
motions and the San Andreas slip rate. They find that
1345 mm/yr of right-lateral slip must occur largely west
of the California coastline along such offshore faults as
the Hosgri. In addition, they resolve 9:£3 mm/yr of
compression perpendicular to the San Andreas fault,
which gives rise to thrust faults and folds in the central
California Coast Ranges.

A single 880-km baseline coincident with the Cali-
fornia VLBI measurements has been observed by satel-
lite laser ranging since 1972 [referred to as the San An-
dreas Fault Experiment, or SAFE]. These SLR observa-
tions have undergone considerable instrument and orbit
development, during which the calculated motion de-
creased dramatically from original values that were re-
ported to be twice the geologic plate rate [Smith, 1980].
Christodoulidis et al. [1985] calculated a rate of 61£25
mm/yr for 1981-83, but data taken since 1983 now sug-
gest a rate of about 205 mm/yr [D.E. Smith, pers.
comm.], commensurate with the VLBI result.

EARTHQUAKE DEFORMATION

The discipline of precise measurement of strain ac-
cumulation and release was born in this country on
April 18, 1906. In his brilliant analysis of the movement
of triangulation stations along the San Andreas fault
that preceded and accompanied the great San Francisco
earthquake, Harry Fielding Reid [1910] offered a geode-
tic strategy for earthquake prediction. “To measure the
growth of strains, we should build a line of piers, say
a kilometer apart, at right angles to the fault,” wrote
Reid in 1910 (p. 31). “A careful determination from
time to time, of the directions of the lines joining suc-
cessive piers, their differences of level, and the exact
distance between them, would reveal any strains which
might be developing along the region the line of piers
crosses.” Reid reasoned that when the shear strain accu-
mulated to an amount equal to what was released during

Contemporary Plate Motion and Crustal Deformation

the previous earthquake release, a strong shock would
follow. “Measures of the class described would be ex-
tremely useful, not only for the purpose of prediction,
but also to reveal the nature of the earth-movements
taking place, and thus lead to a better understanding
of the causes of earthquakes.” Thousands of reference
points in the western U.S. are now surveyed annually
to detect the buildup of crustal strain, and much has
been learned, as Reid forecast, from these measurements
about the cycle of deformation of which an earthquake
is a part. These insights have led to a new picture of
fault geometry and slip patterns at depth and to use-
ful estimates of earthquake repeat times. Unambigu-
ous detection of premonitory deformation nevertheless
continues to elude us. We have succeeded only in es-
tablishing that accelerated fault slip before earthquakes
is either uncommon, restricted to isolated patches, or
has a magnitude less than a few percent of the eventual
earthquake displacement.

Seismic Deformation Cycle

If all strain energy that accumulated between earth-
quakes were released during shocks of equal magnitude,
no permanent deformation would result, and if the rate
of accumulation were constant throughout the buildup,
knowledge of only the coseismic strain drop and its in-
terseismic rate measured at any point in the cycle would
be sufficient to forecast earthquakes. Savage [19834]
employed this rationale to estimate earthquake repeat
times alongthesouthern San Andreas fault from a decade
of Geodolite observations. The measured shear strain
there was 0.3 ppm/yr [Savage, 1983a; Snay et al, 1983].
Assuming a typical strain drop of 50 ppm for the next
earthquake on the southern San Andreas fault, Sav-
age obtained a repeat time of 160 yrs, in accord with
Sieh’s [1984] and Weldon and Sieh’s [1985] measured pre-
historic repeat times of 150-200 yr. Thatcher [19844]
found the 1906 earthquake strain drop on the north-
ern San Andreas to have been about 130 ppm, how-
ever, which would lead to a repeat time of 430 years.
Thatcher [1983, 1984d] used triangulation surveys along
the San Andreas fault to demonstrate that large earth-
quakes are followed by rapid postseismic deformation,
after which strain diffuses outward from the fault at a
slower and nearly steady rate. This pattern can be ex-
plained by a partially or fully faulted lithosphere cou-
pled to a viscoelastic asthenosphere or intracrustal layer.
Immediately after the earthquake the deepest portion of
the fault creeps, giving rise to the postseismic transient.
Between earthquakes, the asthenosphere flows to relieve
traction imposed at the base of the lithosphere by the co-
seismic slip. These interseismic processes accelerate the
accurnulation of strain near the fault shortly after the
earthquake; as a result, the strain buildup is no longer
constant but varies as a function of time and proxim-
ity to the fault. Repeat times are overestimated if these
processes are neglected, with the effect more pronounced
for underthrust earthquakes.

Because dip-slip earthquakes drop and lift parts of
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the crust, gravitational forces are exerted and the seis-
mic and interseismic displacements are not equal. This
imbalance results in the growth of geologic structures,
such as basins and ranges. At convergent plate mar-
gins, where great earthquakes typically repeat at 100-yr
periods, the seismic and interseismic deformation have
been measured for a complete cycle landward of the
trench. Thatcher [1984a, 1984b] and Thatcher and Fujita
[1984] used leveling, tide gauge records, triangulation,
and chained distance measurements in Japan to study
the Nankai and Sagami Trough subduction boundary.
There the coastline slowly drops down between earth-
quakes, but it rises an amount greater than the interseis-
mic subsidence during each major shock [Kato, 1983a,
19838], resulting in marine terraces formed by upraised
former shorelines [Lajoie, 1986]. Models that incorpo-
rate the interaction of elastic and viscous layers and the
effect of buoyant restoring forces upon the earthquake
cycle have been advanced by Li and Rice (19834, 19838],
Savage [1983b], Thatcher and Rundle [1984], and Savage
and Gu [19854]. Reilinger and Kadinsky-Cade [1985] and
Reilinger [1986] have shown that these models can also
explain the postseismic deformation observed for large
dip-slip earthquakes in plate interiors.

Some seismic gaps—segments of plate boundaries
that have not suffered a large historical or recent
earthquake-are currently accumulating strain at rates
consistent with the approach of a large shock. Of two
closely monitored sites where the Pacific plate subducts
beneath Alaska, the Yakataga gap is accumulating strain
at a rapid rate (0.3 ppm/yr; Savage and Lisowski [19864]),
whereas the gap centered on the Shumagin Islands is
not accumulating measurable strain [Savage and Lisowsks,
1986]. This leaves an impending Shumagin gap-
filling earthquake in doubt despite recent short-term
fluctuations of tilt measured by releveling and a tidal-
gauge network [Beavan et al., 1983, 1984]. Subduction
along the Shumagin gap may be aseismic [Savage et al.,
19864|, or the rate of strain accumulation may have
slowed late in the earthquake cycle. A large gap-filling
earthquake apparently struck the Shumagin Islands in
1788, an occurrence which is hard to reconcile with
aseismic subduction. The eastern margin of the Basin
and Range province of the western U.S. produced a
series of large prehistoric earthquakes along the Wasatch
fault in Utah [Schwartz and Coppersmith, 1984]. Here
again, the measured rate of extension across the fault
zone (0.02-0.05 ppm/yr) [Snay et al., 1984; Savage et al.,
1985], is too small to be confidently resolved above noise.

Fault Geometry

Interseismic and coseismic strain measurements have
afforded new insights into the mechanics of transform
faults. Thatcher [1975] showed that slip extended no
deeper than 15 km and possibly only to 5 km during the
1906 earthquake; today, seismicity extends no deeper
than 12-15 km along most of the San Andreas fault.
Transform faults have been successfully modeled as
vertical dislocations either partially or fully locked
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between earthquakes from the surface to a transition
depth and freely slipping at the long-term slip rate
below that depth. Competing models with distributed
deformation below a rheological transition [Thatcher,
1983] are also compatible with the observations, but
the specifics of even the simplest single-fault geometry
have proved difficult to delimit. Prescott and Yu [1986]
demonstrate that shear strain distributed across the
San Andreas and associated faults in the northern San
Francisco Bay region can be modeled with transition
depths from 6 to 30 km. Segall and Harris [1986] found
that transition depths of 14-22 km fit the dense network
of observations along the Parkfield segment of the San
Andreas. King and Savage [1983; 1984] favored locking
depths of 15 km on the southern San Andreas and San
Jacinto faults, but they emphasized that extreme values
of 5 and 20 km cannot be excluded. Matsu’ura et al.
(1986] find the transition to occur at a depth of 1045 km
along the central segment of the San Andreas fault,
south of San Francisco Bay. Because a given profile
of surface strain across a fault can be fit by varying the
slip rate with the transition depth, neither parameter
can be determined independently. This is a practical
limitation of geodetic data for determination of either
the long-term fault slip rate or the depth of the locked
zone of a fault. In principal, it can be overcome by
measuring the strain profile normal to the fault over
an aperture many times wider than the fault depth.
In practice, however, such surveys are limited by the
competing strain fields of adjacent faults and by the
precision of the measurements.

The deformation associated with dip-slip earthquakes
has revealed important surprises about the subsurface
geometry of thrusts and normal faults. The 1983 M =
6.7 Coalinga earthquake struck on a thrust fault with
no surface trace; in fact, analysis of repeated leveling
surveys show that the fault slip did not penetrate
the uppermost 5 km of the crust [Stein and King,
1984]. The larger 1977 M = 7.4 Caucete, Argentina,
earthquake took place on a fault that did not slip
within the upper 15 km of the crust [Kadinsky-Cade
et al, 1985]. In the past, thrust faults that do not
offset surface deposits were not classed as active. At
Coalinga the fault is masked by a young surface fold
in layered sedimentary rocks. The amplitude of this
fold grew 0.75 m during the earthquake, revealing that
at least some folds grow in jumps during earthquakes,
rather than through progressive ductile deformation
as is generally believed. Thus identification of past
and future earthquake sources in regions of crustal
confraction must include a search for active folds.

Investigation of the geodetic record for the three
largest historical normal-faulting earthquakes in the
Basin and Range province, the 1954 M = 7.2 Fairview
Peak, Nevada, 1959 M = 7.3 Hebgen Lake, Montana,
and 1983 M = 7.0 Borah Peak, Idaho, shock indicates
that these earthquakes struck on planar faults dipping
45°-60° and extending to depths of 10-20 km [Snay et al.,
1985; Stein and Barrientos, 1985; Ward and Barrientos,
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1986; Barrientos et al., 1987]. This result contrasts with
previous interpretations that the Basin and Range is
extending by slip on shallow, gently-dipping faults that
are reactivated thrust faults from a former episode of
contraction.

Precursory Deformation

Near-field measurement of preseismic deformation
shortly before an earthquake is a nearly impossible
task; too many candidate faults exist for them to
be frequently monitored. The 1984 M = 6.2 Mor-
gan Hill, California, earthquake [Bakun et al., 1984],
however, struck within a Geodolite ground-based laser
ranging net, with a precision of 0.2 ppm. Prescott et al.
[1984] measured lines within 5 km of the epicenter
2 weeks, 8 days, and 1 day before the main shock.
No preseismic deformation was detected, indicating
that no preseismic slip greater than 100 mm occurred
on a fault that sustained 425 mm of coseismic slip.
Near-field recordings of dilatational strain (resolution
of 10~* ppm) and shear strain (resolution of 10~2 ppm)
measured in borehole instruments by Johnston et al.
[1987] 30-50 km from the M = 6.7 1983 Coalinga, M =
6.0 1984 Kettleman Hills, M = 6.2 1984 Morgan Hill,
1984 M = 5.8 Round Valley earthquakes in California
and the 1978 M = 7.0 Izu earthquakes in Japan
fail to reveal earthquake precursors. Any precursory
slip within several hours to days must have been less
than a few percent of the coseismic slip during these
moderate to large earthquakes to explain the absence
of preseismic strain changes. An alternate explanation
is that precursory fault slip is restricted to very strong
or very weak patches of the fault, an idea supported by
seismic evidence that ruptures start and stop at bends
or offsets of faults [King and Nabelek, 1985].

Permissive evidence for deformation or accelerated
fault creep before an earthquake is widespread but equiv-
ocal: During the 6 months preceding the Coalinga earth-
quake, for example, wire creepmeters on the adjacent
Parkfield segment of the San Andreas fault 40 km from
Coalinga measured creep that was faster than their long-
term averages [Mavko et al., 1985]. Before the most re-
cent (1966) earthquake on this segment of the San An-
dreas, new cracks were noted along the fault and a pipe
crossing the fault apparently ruptured. Seasonal expan-
sion and contraction of the surface materials could, how-
ever, plausibly explain both the 1966 and 1983 changes.
Segall and Harris [1986] inverted the Geodolite line-length
changes along this segment and showed that the deficit
in slip since 1966 is now equal to the coseismic slip mea-
sured in 1966. This geodetic evidence fulfills Reid’s pre-
scription for an earthquake prediction; it also comple-
ments a forecast predicated on the seismic history of the
Parkfield segment of the fault, which has ruptured in a
M = 53/4 earthquake every 22+5 yr since 1857 [Bakun
and Lindh, 1985].
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RECENT ASEISMIC DEFORMATION IN
SouTHERN CALIFORNIAT

Despite concerted efforts both to measure the vari-
ations of strain accumulation and vertical deformation
in the vicinity of the big bend of the San Andreas fault
and to model the errors intrinsic to these measurements,
considerable doubt still attends reports of episodic de-
formation in southern California. Simply put, the ob-
served strain increment in 1979 [Savage and Gu, 1985b]
and the uplift at Palmdale [Castle et al., 1984] are close
enough to measurement uncertainty to be suspect.

Aseismic uplift of southern California during the pe-
riod 1953-73 has been a subject of continuing exami-
nation since it was first reported by Castle et al. [1976].
Systematic leveling errors caused by atmospheric refrac-
tion of the line of sight were examined in detail during
the past 4 years. Most of these studies found the errors
to be significant [Holdakl, 1983; Jackson et al., 1983; Shaw
and Smietana, 1983; Strange, 1981; Herouz et al, 1985;
Stein et al., 1986]. A field test of atmospheric refrac-
tion showed that the error can be modeled and removed
from surveys made since 1930; when this is done the
aseismic uplift at Palmdale during 1955-65 shrinks to
5616 mm [Stein et al., 1986]. Others contend that the
experiment was inadequate [Castle et al., 1983a, Craymer
and Vanidek, 1986] or that the errors are small and do not
merit correction [Castle et al., 1983b, 1984, 1985; Burford
and Gilmore, 1984]. An equally large systematic error in
leveling conducted with the Zeiss Nil automatic level
instrument used during 1972-80 has been studied in the
laboratory |Whalen, 1984] and empirical [Strange, 1985;
Holdahl et al., 1986] methods. Under most circumstances,
the error can be removed, but the laboratory investiga-
tions report the error to be twice as large as analysis of
the field records would indicate. Magnetic errors require
further study; they may affect some of the southern Cal-
ifornia leveling results presented by Jachens et al. [1983].

Strain changes measured by southern California Ge-
odolite networks showed that an anomalous contraction
measured perpendicular to the San Andreas fault since
1973 was abruptly released during mid-1979. This
change was immediately preceded by large line-length
changes on the VLBI triangle that circumscribes the
Palmdale Geodolite net, and it was accompanied by
changes in gravity and elevation [Jachens et al, 1983].
These VLBI results were never published; analyses
of the VLBI measurements made since 1980 show no
such excursions [Lyzenga and Golombeck, 1986). Jackson
et al. [1983] argued that the Geodolite observations
were contaminated by a large zero or offset error
and systematic temperature-dependent errors. Savage
and Prescott [1983] replied that these errors are too
small to account for the strain excursions. Savage and
Gu [1985], however, acknowledge that since 1980 the
principal strain changes measured with the Geodolite
have been more erratic than they were before 1979,
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casting renewed doubt on the earlier Geodolite anomaly.
Statistically significant correlations between dilatation,
gravity, elevation, and the local magnetic field provide
some independent corroboration of the strain changes
[Jachens et al., 1983; Johnston, 1987], but the signal/
noise ratio for the individual observations is quite small.
A 2-color geodimeter installed at Palmdale has been
recording measurements weekly to quarterly since 1980.
Excursions in strain over periods as short as 2 weeks
have been reported, but these anomalies suffer from
similar uncertainty [Langbein et al., 1982]. Unlike the
principal strains, the rate of shear strain accumulation
has been very steady since 1972 [Savage et al., 19868].
Because shear is less subject to scale or temperature
errors, the changes in dilatation remain questionable.

Vorcanic DEFORMATION

Magmatic Injection

In 1980, an intense seismic swarm punctuated by
four moderate earthquakes (My > 6) began beneath
Long Valley caldera in California. The caldera had
formed when the volcanic edifice collapsed into its
partially voided magma chamber during a spectacular
eruption 700,000 yrs ago, when 600 km® of magma
was expelled and ash was spewed as far as Kansas,
1500 km away. The caldera has since produced smaller
peripheral erupiions every 500-1000 yr. Savage and
Clark [1982] showed that the spate of earthquakes was
accompanied by extension and domal uplift of the
caldera floor, deformation which they attributed to
injection of 0.1 km® of magma into the crust at a depth
of about 10 km and to strike-slip faulting adjacent
to the caldera. The caldera abruptly uplifted 0.25 m
between 1975 and 1980 after at least 60 years of stability
[Castle et al., 1984]. A succeeding seismic swarm in
1982-1983 was monitored in great detail by increased
horizontal and vertical geodetic coverage. Savage and
Lisowsk: [1984] and Savage and Cockerham 1984] explained
the renewed activity by intrusion of 0.03 km® of magma
into an inclined tabular body, or sill, at a depth of 8 km,
accompanied by strike-slip displacement on a vertical
fracture extending from the sill.

Denlinger and Riley [1984] and Denlinger et al. [1985]
analyzed a concentrated electronic distance measure-
ment network and suggested that the 1980-83 defor-
mation was produced by opening of a horizontal sill ac-
companied by movement on a separate strike-slip fault,
but Rundle and Whitcomb [184] and Whitcomb and Rundle
[1985] argued that two magma cupolas at depths of 5
and 8 km, or fingers extending upward from a larger
chamber, fit the geodetic and repeat gravity observa-
tions better than a sill. As with attempts to deter-
mine the transition depth of strike-slip faults, interpre-
cations of the caldera surface inflation are nonunique,
the depth of the source varying with the volume of the
injection. In light of changes in the surface kydrother-
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mal system, and results of seismic imaging studies, how-
ever, it is now inescapable that magma has been in-
jected into the upper crust beneath some portions of
the caldera. Whether this process will culminate in an
eruption or a large earthquake is unknown. A network of
tiltmeters, dilatometers, lake level gauges, and a 2-color
laser geodimeter have been installed to provide real-time
indices of the state of deformation. Since 1983 the rate
of extension and elevation change has slowed [Linker
et al., 1986, but two more My > 6 earthquakes have
struck outside of the caldera [Gross and Savage, 1086;
Gross and Savage, 1987).

Rabaul caldera in Papua New Guinea, and Campi
Flegrei (“Fiery Fields”) in Pozzuoli Italy, also awoke
during the past several years, heralded by dramatic in-
creases in seismicity and inflation but, as yet, no erup-
tions. Raubul, which last erupted in 1937, and Campi
Flegrei, which erupted in 1538, both exhibit deforma-
tion compatible with very shallow sites of magma in-
jection. McKee et al. [1985] suggest that inflation ob-
served at Raubul during 1983-84 can be explained by
two sources at 1 and 3 km depths. The rate of extension
has subsided since 1984. At Pozzuoli, a pulse of uplift
during 1982-84 totaling 160 cm may have resulted from
sources of inflation at a depth of 3-5 km [Decker, 1986].
The deformation rate has also slowed during the past
year at Pozzuoli. Prehistoric eruption of both of these
calderas led to the formation of deep coastal harbors; as
a result the areas are densely populated, and must be
closely monitored for earthquakes and deformation.

Eruption Monitoring

Recent eruptions at Mt. St. Helens Volcano in Wash-
ington, and Mauna Loa and Kilauea Volcanoes in Hawaii
have provided convincing evidence that these violent
events can be predicted, if the magma-ascent process
is understood and vigilant geodetic surveillance of the
volcanic edifice is maintained. The 18 May 1980 erup-
tion of Mt. St. Helens was preceded by bulging of the
north flank at an astonishing rate of 2 m/d as well as by
a sequence of summit earthquakes. Swanson et al, [1983,
1985] and Dzurisin et al. [1983] document thirteen mi-
nor dome-building eruptions of Mt. St. Helens through
1982 that were predicted by precursory seismicity, de-
formation, and gas emission. Measuring the daily move-
ment of the congealed plug of magma within the sum-
mit crater proved a reliable but dangerous technique to
gauge deeper magma movement.

Using geodetic and seismic precursors of the 1975
summit eruption of Mauna Loa in Hawaii to guide inter-
pretation of data gathered during 1981-83, Decker et al.
[1983] forecast that an eruption of Mauna Loa would
occur during the succeeding 2 years. Accelerated line-
length changes across the volcano summit accompanied
by shallow seismicity increases led these investigators
to suspect magma movement at a depth of about 3 km
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[Klein, 1984]. The eruption followed in 1984 [see Lock-
wood et al., 1985]. South of Mauna Loa, a M = 7.2
earthquake and associated eruption of Kilauea volcano
in 1975 displaced the entire volcanic edifice south of the
summit 8 m seaward and 3.5 m downward along a near-
horizontal slip surface at a probable depth of 6-10 km
[Lipman et al., 1985]. This eruption was preceded by
large and abrupt changes in line length on the flank
of the volcano and by inflation of the summit [see also
Davis, 1986, and Dvorak et al., 1986].

The observation that these volcanoes of different ages
and histories all possess magma chambers at depths of
3-5 km has led Decker [1986] to argue that the chamber
must migrate upward as the volcano grows and evolves.
If this were not the case, older volcanoes would increase
the distance to their magma source as they built up
successive layers of volcanic deposits. These upper
crustal magma chambers must in turn have conduits
to larger and deeper reservoirs, because the penultimate
eruptions expel more magma than the shallow chambers
can hold.

WHAT'S AHEAD

Space Geodesy

Space and satellite-based geodesy is developing rapidly;
within the next few years, repeated Very Long Baseline
Interferometry (VLBI) and Global Positioning System
(GPS) measurements will begin to flood the literature.
Portable VLBI receivers make possible an expanded pro-
gram of measurements [see, for example, Davidson and
Trask, 1985; Herrring, 1986; Kolenkowicz et al., 1985; Kroger
et al., 1986]. The ability to measure baselines as long as
10,000 km insures that VLBI will remain vital for the
study of plate motion. The Global Positioning System
promises to become the most widely used geodetic tool
for baselines less than about 500 km in length, in part
because of its portability and low cost [see Goad, 1985,
for the current status of GPS development]. Bock et al.
[1985] measured a 35-station network with a precision of
1 ppm. Atmospheric corrections using water vapor ra-
diometers should allow this precision to be maintained
during inclement weather [Ware et al., 1985]. Currently,
4-45 km baselines are being measured simultaneously
with GPS and the laser Geodolite; GPS displays an
accuracy of 0.5-1.0 ppm relative to the laser Geodo-
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lite, which has a demonstrated accuracy of 0.2 ppm
[Prescott and Svarc, 1986]. Planned satellite launches
will strengthen the current constellation, and improved
satellite tracking by GPS receivers co-located with VLBI
radio antennae offers the prospect of increased preci-
sion during the next few years. The deformation of the
sea floor accompanying great subduction earthquakes,
hidden from us by the ocean, may also soon be mea-
sured from associated changes in the gravity field by
the Geopotential Research Mission satellites [ Wagner and
McAdoo, 1986].

The Need for Deformation Metrology

A few perennial problems have hampered deformation
monitoring in the U.S. Instruments have too often been
placed in field operation before they were proven to be
reliable, drift free, and accurate. New generations of in-
struments or new methods for conducting measurements
have also succeeded older ones without parallel running
of both systems to assess their systematic differences.
Finally, in an attempt to monitor as many tectonically
active regions as possible, too few instruments have been
dispersed too widely. These practices have been more
costly to our understanding of active faults rather than
active volcanoes, because volcanic regions tend to de-
form and generate earthquakes at a much higher rate
than do tectonic provinces. The establishment of the
Pifion Flat Observatory in California [see, for example,
Wyatt et al., 1984; Agnew, 1986] has been vital for redun-
dant testing and intercomparison of virtually all short-
and long-baseline deformation measurement systems at
a stable site on crystalline bedrock. Efforts to monitor
the approach of the next earthquake on the San An-
dreas fault along the Parkfield segment and to watch
for signs of a potential eruption at Long Valley caldera
have also created two concentrated instrument deploy-
ments. BEvaluation of a dozen competing and ancillary
measurements will improve our confidence in some in-
struments and remove our faith in others.
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